
Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

P.A. Bellino A. Gomez G. Estryk C. Grant

National Atomic Energy Commission, Department of Nuclear Energy, Argentina

International Conference on Research Reactors: Safe Management and Effective Utilization 14-18 November 2011, Rabat, Morocco

Objectives

Kinetic parameters estimation

- Inverse kinetics as a reactimeter in subcritical states (monitoring a refueling operation).
- Determination of the strength of the neutron source (point kinetic model).
- Characterization of the neutron source. Photoneutron effectiveness estimation (γ^{ph}) .
- Neutron noise technique in presence of ${}^{135}Xe$ and high gamma exposure rate $(10^6 R/h)$.
- Reactivity and power estimations $(30 \, mW$ to $200 \, mW)$.

Objectives

Kinetic parameters estimation

- Inverse kinetics as a reactimeter in subcritical states (monitoring a refueling operation).
- Determination of the strength of the neutron source (point kinetic model).
- Characterization of the neutron source. Photoneutron effectiveness estimation (γ^{ph}) .
- Neutron noise technique in presence of ${}^{135}Xe$ and high gamma exposure rate $(10^6 R/h)$.
- Reactivity and power estimations $(30 \, mW$ to $200 \, mW)$.

Objectives

Kinetic parameters estimation

- Inverse kinetics as a reactimeter in subcritical states (monitoring a refueling operation).
- Determination of the strength of the neutron source (point kinetic model).
- Characterization of the neutron source. Photoneutron effectiveness estimation (γ^{ph}) .
- Neutron noise technique in presence of ${}^{135}Xe$ and high gamma exposure rate $(10^6 R/h)$.
- Reactivity and power estimations $(30 \, mW$ to $200 \, mW)$.

Objectives

Kinetic parameters estimation

- Inverse kinetics as a reactimeter in subcritical states (monitoring a refueling operation).
- Determination of the strength of the neutron source (point kinetic model).
- Characterization of the neutron source. Photoneutron effectiveness estimation (γ^{ph}) .
- Neutron noise technique in presence of ^{135}Xe and high gamma exposure rate $(10^6 R/h)$.
- Reactivity and power estimations $(30 \, mW$ to $200 \, mW)$.

Objectives

Kinetic parameters estimation

- Inverse kinetics as a reactimeter in subcritical states (monitoring a refueling operation).
- Determination of the strength of the neutron source (point kinetic model).
- Characterization of the neutron source. Photoneutron effectiveness estimation (γ^{ph}) .
- Neutron noise technique in presence of ${}^{135}Xe$ and high gamma exposure rate $(10^6 R/h)$.
- Reactivity and power estimations $(30 \, mW$ to $200 \, mW)$.

Objectives

Kinetic parameters estimation

- Inverse kinetics as a reactimeter in subcritical states (monitoring a refueling operation).
- Determination of the strength of the neutron source (point kinetic model).
- Characterization of the neutron source. Photoneutron effectiveness estimation (γ^{ph}) .
- Neutron noise technique in presence of ${}^{135}Xe$ and high gamma exposure rate $(10^6 R/h)$.
- Reactivity and power estimations (30 mW to 200 mW).

Neutron source

Photoneutrons

- Produced in the reaction $D(\gamma, n)H$ for $E_{\gamma} > 2,23 \, MeV$
- Treated as nine extra groups of delayed neutrons in the point kinetic equations.
- Assumed to come from precursors originated during the normal operation of the reactor at full power.
- Measurements were made 36 h after the reactor shutdown. The photoneutron source was assumed to be constant during each measurement (~ h).

Neutron source

Photoneutrons

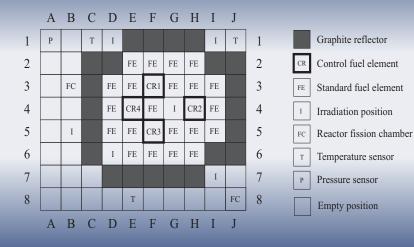
- Produced in the reaction $D(\gamma, n)H$ for $E_{\gamma} > 2,23 \, MeV$
- Treated as nine extra groups of delayed neutrons in the point kinetic equations.
- Assumed to come from precursors originated during the normal operation of the reactor at full power.
- Measurements were made 36 h after the reactor shutdown. The photoneutron source was assumed to be constant during each measurement (~ h).

Neutron source

Photoneutrons

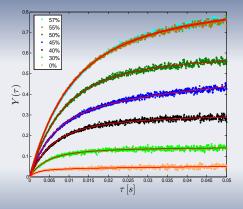
- Produced in the reaction $D(\gamma, n)H$ for $E_{\gamma} > 2,23 \, MeV$
- Treated as nine extra groups of delayed neutrons in the point kinetic equations.
- Assumed to come from precursors originated during the normal operation of the reactor at full power.
- Measurements were made 36 h after the reactor shutdown. The photoneutron source was assumed to be constant during each measurement (~ h).

Neutron source


Photoneutrons

- Produced in the reaction $D(\gamma, n)H$ for $E_{\gamma} > 2,23 MeV$
- Treated as nine extra groups of delayed neutrons in the point kinetic equations.
- Assumed to come from precursors originated during the normal operation of the reactor at full power.
- Measurements were made 36 h after the reactor shutdown. The photoneutron source was assumed to be constant during each measurement (~ h).

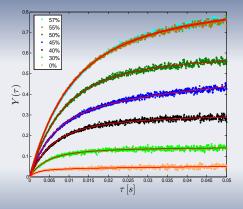
Experimental procedure


RA-3 core configuration

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

Neutron noise technique

Reactivities: -6 < \$ < -0.5Count rate: $1 \, 10^5 cps < R < 7 \, 10^5 cps$

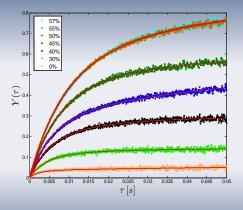

α -Feynman method
$Y(au) = rac{\epsilon D}{lpha^2 \Lambda^2} \left(1 - rac{1 - e^{-lpha au}}{lpha au} ight)$

D: Diven factor Λ : Neutron generation time ϵ : Absolute efficiency (\sim Power) α : Prompt neutron decay constant

Power and reactivity are estimated in each stationary subcritical state.

Neutron noise technique

Reactivities: -6 < \$ < -0.5Count rate: $110^5 cps < R < 710^5 cps$


α -Feynman method
$Y(\tau) = rac{\epsilon D}{lpha^2 \Lambda^2} \left(1 - rac{1 - e^{-lpha au}}{lpha au} ight)$

D: Diven factor Λ : Neutron generation time ϵ : Absolute efficiency (\sim Power) α : Prompt neutron decay constant

Power and reactivity are estimated in each stationary subcritical state.

Neutron noise technique

Reactivities: -6 < \$ < -0.5Count rate: $1 \, 10^5 cps < R < 7 \, 10^5 cps$

α -Feynman method
$Y(au) = rac{\epsilon D}{lpha^2 \Lambda^2} \left(1 - rac{1 - e^{-lpha au}}{lpha au} ight)$

D: Diven factor Λ : Neutron generation time ϵ : Absolute efficiency (\sim Power) α : Prompt neutron decay constant

Power and reactivity are estimated in each stationary subcritical state.

Estimation of α_c

$$\alpha = \alpha_{c} + \frac{\tilde{S}}{R}$$

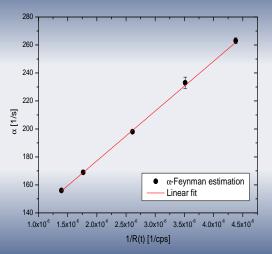
By measuring α and R at different subcritical states a linear fit can be performed to obtain α_c .

$$\alpha_c = (106 \pm 1)s^{-1}$$

Estimation of α_c

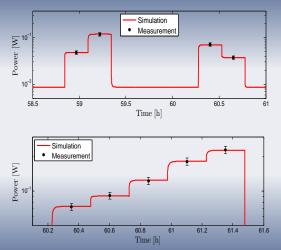
$$\alpha = \alpha_{c} + \frac{\tilde{S}}{R}$$

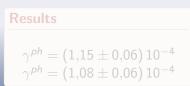
By measuring α and R at different subcritical states a linear fit can be performed to obtain α_c .



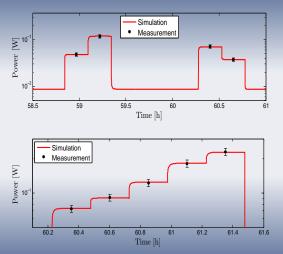
Estimation of α_c

At each subcritical state: $\alpha = \alpha_c + \frac{\tilde{S}}{R}$

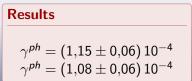

By measuring α and R at different subcritical states a linear fit can be performed to obtain α_c .


$$\alpha_{\textit{c}} = (106 \pm 1) \textit{s}^{-1}$$

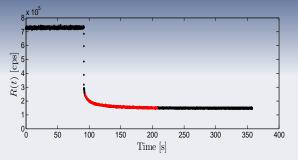
Estimation of γ^{ph}



Parametric variation of γ^{ph} in the point kinetics equations until the best fit of the simulation to the measured power is found.



Estimation of γ^{ph}

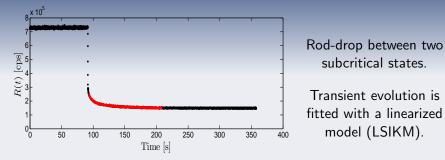

Parametric variation of γ^{ph} in the point kinetics equations until the best fit of the simulation to the measured power is found.

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

Least square inverse kinetics method

Rod-drop between two subcritical states.

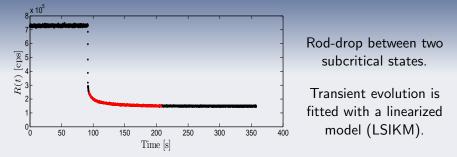
Transient evolution is fitted with a linearized model (LSIKM).


$$R(t) = \frac{\Lambda^*}{\$_f - 1} \tilde{Q}(t) - \frac{\Lambda^* S}{\$_f - 1}$$

Measuring R(t) and $\bar{Q}(t)$ one can obtain the final state reactivity $(\$_f)$ and the source strength (\tilde{S}) .

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

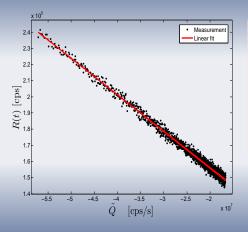
Least square inverse kinetics method


$$R(t)=rac{\Lambda^*}{\$_f-1} ilde{Q}(t)-rac{\Lambda^* ilde{S}}{\$_f-1}$$

Measuring R(t) and Q(t) one can obtain the final state reactivity $(\$_f)$ and the source strength (\tilde{S}) .

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

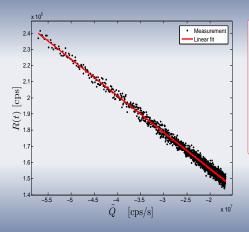
Least square inverse kinetics method


$$R(t)=rac{\Lambda^*}{\$_{f}-1} ilde{Q}(t)-rac{\Lambda^* ilde{S}}{\$_{f}-1}$$

Measuring R(t) and $\tilde{Q}(t)$ one can obtain the final state reactivity $(\$_f)$ and the source strength (\tilde{S}) .

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

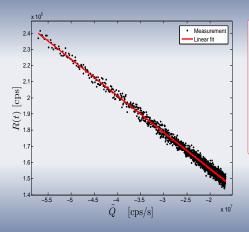
Least square inverse kinetics method



Estimated values • Detector at G8 $\tilde{S} = (6,90 \pm 0,04) \, 10^6 \, cps/s$ • Detector at B1 $\tilde{S} = (2,6 \pm 0,1) \, 10^6 \, cps/s$

depends on the detector efficiency However,it is the magnitude that appears in the inverse kinetics.

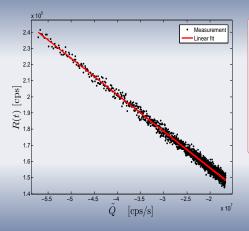
Least square inverse kinetics method



Estimated values		
0	Detector at G8	
	$ ilde{S}=(6,90\pm0,04)10^6cps/s$	
0	Detector at B1	
	$ ilde{S}=(2,6\pm0,1)10^6cps/s$	

depends on the detector efficiency However, it is the magnitude that appears in the inverse kinetics.

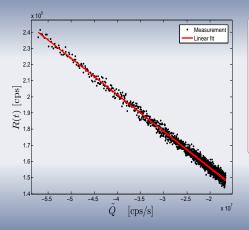
Least square inverse kinetics method



Estimated values		
٩	Detector at G8	
	$ ilde{S} = (6,\!90\pm0,\!04)10^6cps/s$	
0	Detector at B1	
	$ ilde{S}=(2,6\pm0,1)10^6cps/s$	

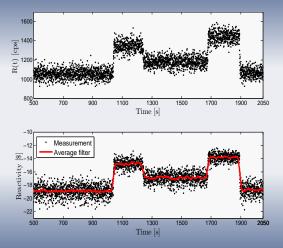
depends on the detector efficiency However, it is the magnitude that appears in the inverse kinetics.

Least square inverse kinetics method



Estimated values • Detector at G8 $\tilde{S} = (6,90 \pm 0,04) \, 10^6 \, cps/s$ • Detector at B1 $\tilde{S} = (2,6 \pm 0,1) \, 10^6 \, cps/s$

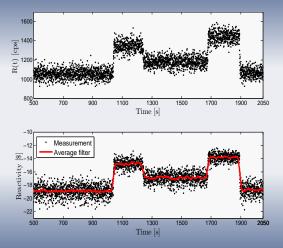
depends on the detector efficiency However, it is the magnitude that appears in the inverse kinetics.


Least square inverse kinetics method

Estimated values • Detector at G8 $\tilde{S} = (6,90 \pm 0,04) \, 10^6 \, cps/s$ • Detector at B1 $\tilde{S} = (2,6 \pm 0,1) \, 10^6 \, cps/s$

 \tilde{S} depends on the detector efficiency. However, it is the magnitude that appears in the inverse kinetics.

Subcritical reactimeter

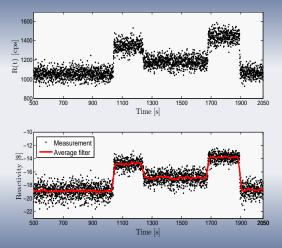


With the estimation of \tilde{S} , the reactivity can be obtained measuring the count rate during a refueling operation.

Refueling operation

- Extraction CR from F5
- Extraction FE from F5
- Entering fresh FE at F5

Subcritical reactimeter

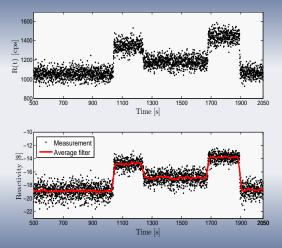


With the estimation of \tilde{S} , the reactivity can be obtained measuring the count rate during a refueling operation.

Refueling operation

- Extraction CR from F5
- Extraction FE from F5
- Entering fresh FE at F5
- Entering CR at F5

Subcritical reactimeter

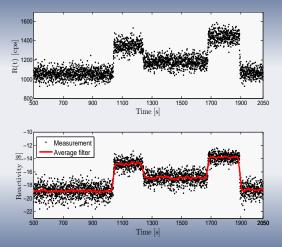


With the estimation of \tilde{S} , the reactivity can be obtained measuring the count rate during a refueling operation.

Refueling operation

- Extraction CR from F5
- Extraction FE from F5
- Entering fresh FE at F5
- Entering CR at F5

Subcritical reactimeter

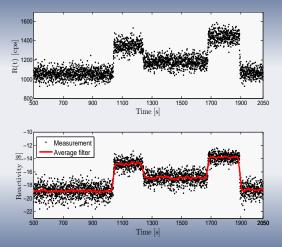


With the estimation of \tilde{S} , the reactivity can be obtained measuring the count rate during a refueling operation.

Refueling operation

- Extraction CR from F5
- Extraction FE from F5
- Entering fresh FE at F5

Subcritical reactimeter

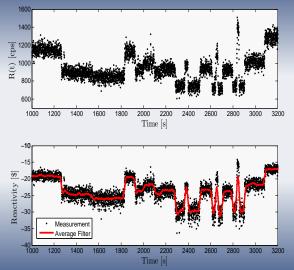


With the estimation of \tilde{S} , the reactivity can be obtained measuring the count rate during a refueling operation.

Refueling operation

- Extraction CR from F5
- Extraction FE from F5
- Entering fresh FE at F5

Subcritical reactimeter


With the estimation of \tilde{S} , the reactivity can be obtained measuring the count rate during a refueling operation.

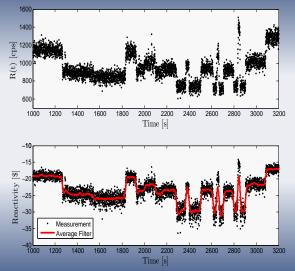
Refueling operation

- Extraction CR from F5
- Extraction FE from F5
- Entering fresh FE at F5

10 / 18

Subcritical reactimeter

Core 212 to 213

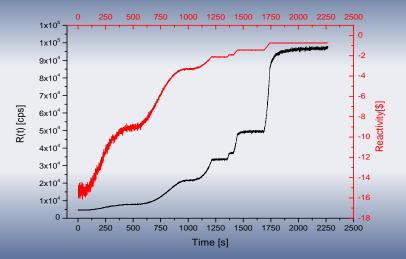

Extraction of burned FE, rotation and entering fresh FE

At these highly bention boots operation effects become mportant in reactivity estimations.

11 / 18

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

Subcritical reactimeter


Core 212 to 213

Extraction of burned FE, rotation and entering fresh FE

At these highly subcritical levels, spatial effects become important in reactivity estimations.

Approach to critical

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

Numerical model

Diffusive code PUMA

Using a homogeneous neutron source in all the fuel channels (First step) $% \left(\left(F_{1},F_{2},F_{1},F_{2},F_{1},F_{2},F_{1},F_{2},F$

- As the magnitude of the neutron source was not known in advance, all the comparisons were made relative to the first state.
- A refueling operation was calculated

Numerical model

Diffusive code PUMA

Using a homogeneous neutron source in all the fuel channels (First step)

• As the magnitude of the neutron source was not known in advance, all the comparisons were made relative to the first state.

A refueling operation was calculated.

Numerical model

Diffusive code PUMA

Using a homogeneous neutron source in all the fuel channels (First step)

- As the magnitude of the neutron source was not known in advance, all the comparisons were made relative to the first state.
- A refueling operation was calculated.

Results from core 212 to 213

Core	Experimental		PUMA		
configuration i	R_i/R_0	ρ_0/ρ_i	φi/φ0	P_i/P_0	ρ_0/ρ_i
Core 212 0	1	1	1	1	1
1	0.78 (3)	0.8 (1)	0.784	0.910	0.928
2	0.74 (3)	0.7 (1)	0.740	0.788	0.809
3	0.98 (4)	1.00 (5)	0.962	0.878	0.885
4	0.82 (3)	0.8 (1)	0.806	0.915	0.939
5	0.81 (3)	0.8 (1)	0.787	0.884	0.901
6	0.88 (4)	0.9 (1)	0.821	0.783	0.787
Core 213 7	1.11 (4)	1.12 (5)	1.113	1.090	1.081

Numerical model

Future improvements

- Calculate the photoneutron source.
- ORIGEN with the information of each FE.
- MCNPX to obtain the photoneutron source.
- MCNPX/PUMA for the neutronic problem.

Numerical model

Future improvements

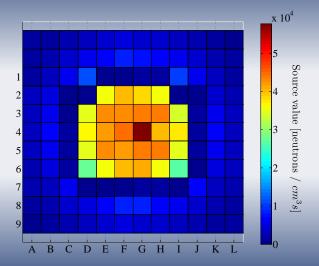
- Calculate the photoneutron source.
- ORIGEN with the information of each FE.
- MCNPX to obtain the photoneutron source.
- MCNPX/PUMA for the neutronic problem.

Numerical model

Future improvements

- Calculate the photoneutron source.
- ORIGEN with the information of each FE.
- MCNPX to obtain the photoneutron source.
- MCNPX/PUMA for the neutronic problem.

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States


Numerical model

Future improvements

- Calculate the photoneutron source.
- ORIGEN with the information of each FE.
- MCNPX to obtain the photoneutron source.
- MCNPX/PUMA for the neutronic problem.

Photoneutron source (MCNPX)

Conclusions

- Measurements at subcritical states with high gamma background and ^{135}Xe .
- With the neutron noise technique reactivities were estimated between −6 and −0,5 dollars. Power between 30 mW and 200 mW.
- First estimations of the pohotoneutron effectiveness $\gamma^{ph} = (1.12 \pm 0.06) \, 10^{-4}$
- Estimation of the source strength value (\tilde{S}) that appears in the point kinetics equation.
- Using the inverse kinetics as a subcritical reactimeter
- Monitoring a refueling operation and an approach to critical with a subcritical reactimeter.
- Future measurements with two or more detectors. Detailed studies of spatial effects (correction factors).

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

- Measurements at subcritical states with high gamma background and ^{135}Xe .
- With the neutron noise technique reactivities were estimated between -6 and -0.5 dollars. Power between $30 \ mW$ and $200 \ mW$.
- First estimations of the pohotoneutron effectiveness $\gamma^{ph} = (1.12 \pm 0.06) \, 10^{-4}$
- Estimation of the source strength value (\tilde{S}) that appears in the point kinetics equation.
- Using the inverse kinetics as a subcritical reactimeter
- Monitoring a refueling operation and an approach to critical with a subcritical reactimeter.
- Future measurements with two or more detectors. Detailed studies of spatial effects (correction factors).

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

- Measurements at subcritical states with high gamma background and ^{135}Xe .
- With the neutron noise technique reactivities were estimated between -6 and -0.5 dollars. Power between $30 \ mW$ and $200 \ mW$.
- First estimations of the pohotoneutron effectiveness $\gamma^{ph} = (1.12 \pm 0.06) \, 10^{-4}$
- Estimation of the source strength value (\tilde{S}) that appears in the point kinetics equation.
- Using the inverse kinetics as a subcritical reactimeter
- Monitoring a refueling operation and an approach to critical with a subcritical reactimeter.
- Future measurements with two or more detectors. Detailed studies of spatial effects (correction factors).

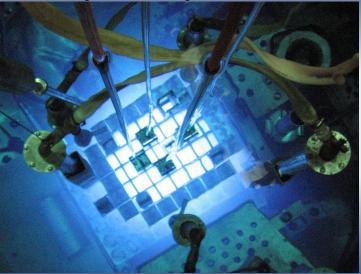
Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

- Measurements at subcritical states with high gamma background and ^{135}Xe .
- With the neutron noise technique reactivities were estimated between -6 and -0.5 dollars. Power between $30 \ mW$ and $200 \ mW$.
- First estimations of the pohotoneutron effectiveness $\gamma^{ph} = (1.12 \pm 0.06) \, 10^{-4}$
- Estimation of the source strength value (\tilde{S}) that appears in the point kinetics equation.
- Using the inverse kinetics as a subcritical reactimeter
- Monitoring a refueling operation and an approach to critical with a subcritical reactimeter.
- Future measurements with two or more detectors. Detailed studies of spatial effects (correction factors).

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States

- Measurements at subcritical states with high gamma background and ^{135}Xe .
- With the neutron noise technique reactivities were estimated between -6 and -0.5 dollars. Power between $30 \ mW$ and $200 \ mW$.
- First estimations of the pohotoneutron effectiveness $\gamma^{ph} = (1.12 \pm 0.06) \, 10^{-4}$
- Estimation of the source strength value (\tilde{S}) that appears in the point kinetics equation.
- Using the inverse kinetics as a subcritical reactimeter
- Monitoring a refueling operation and an approach to critical with a subcritical reactimeter.
- Future measurements with two or more detectors. Detailed studies of spatial effects (correction factors).

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States


- Measurements at subcritical states with high gamma background and ^{135}Xe .
- With the neutron noise technique reactivities were estimated between -6 and -0.5 dollars. Power between $30 \ mW$ and $200 \ mW$.
- First estimations of the pohotoneutron effectiveness $\gamma^{ph} = (1.12 \pm 0.06) \, 10^{-4}$
- Estimation of the source strength value (\tilde{S}) that appears in the point kinetics equation.
- Using the inverse kinetics as a subcritical reactimeter
- Monitoring a refueling operation and an approach to critical with a subcritical reactimeter.
- Future measurements with two or more detectors. Detailed studies of spatial effects (correction factors).

- Measurements at subcritical states with high gamma background and ^{135}Xe .
- With the neutron noise technique reactivities were estimated between -6 and -0.5 dollars. Power between $30 \ mW$ and $200 \ mW$.
- First estimations of the pohotoneutron effectiveness $\gamma^{ph} = (1.12 \pm 0.06) \, 10^{-4}$
- Estimation of the source strength value (\tilde{S}) that appears in the point kinetics equation.
- Using the inverse kinetics as a subcritical reactimeter
- Monitoring a refueling operation and an approach to critical with a subcritical reactimeter.
- Future measurements with two or more detectors. Detailed studies of spatial effects (correction factors).

Thank you for your attention

Kinetic Parameters Estimation in a MTR Research and Production Reactor in Subcritical States